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Abstract

A new method, MUNIN (Multi-dimensional NMR spectra interpretation), is introduced for the automated in-
terpretation of three-dimensional NMR spectra. It is based on a mathematical concept referred to as three-way
decomposition. An NMR spectrum is decomposed into a sum of components, with each component corresponding
to one or a group of peaks. Each component is defined as the direct product of three one-dimensional shapes. A
consequence is reduction in dimensionality of the spectral data used in further analysis. The decomposition may
be applied to frequency-domain or time-domain data, or to a mixture of these. Features of MUNIN include good
resolution in crowded regions and the absence of assumptions about line shapes. Uniform sampling of time-domain
data, a prerequisite for discrete Fourier transform, is not required. This opens an avenue for the processing of NMR
data that do not follow oscillating behaviour, e.g. from relaxation measurements. The application of MUNIN is
illustrated for a 1H-15N-NOESY-HSQC, where each component is defined as the set of all NOE peaks formed by
a given amide group. As a result, the extraction of structural information simply consists of one-dimensional peak
picking of the shape along the NOE-axis obtained for each amide group.

Abbreviations: MUNIN, multi-dimensional NMR spectra interpretation; DFT, discrete Fourier transform;
PARAFAC, parallel factor analysis; NOESY, nuclear Overhauser enhanced spectroscopy; 1H-15N-HSQC, 15N-
based heteronuclear single quantum spectroscopy; 3D 1H-15N-NOESY-HSQC, three-dimensional combination of
NOESY and 1H-15N-HSQC; E.COSY, exclusive correlated spectroscopy.

Introduction

MUNIN is an implementation of the concept that
the interpretation of spectroscopic data is equiva-
lent to achieving a separation of the spectral signals,
and to cope with spectral noise. In terms of NMR
spectroscopy, this concept translates into the decom-
position of an experimental input consisting of raw
time-domain data into components that describe single
peaks or groups of related peaks. Separation of peaks
in an NMR spectrum relies on their identification or, in
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other words, on the estimation of frequencies, ampli-
tudes and other features. Conventionally, this goal is
approached in two steps. First, discrete Fourier trans-
form (DFT) is applied to the raw time-domain NMR
data. Next, interactive or automated peak picking pro-
cedures are used to identify the individual signals.
DFT, although being a well-established, fast and ro-
bust transformation, has several drawbacks when ap-
plied to multi-dimensional NMR spectroscopy. Input
for DFT should be sampled at regular time intervals,
which precludes optimal data sampling with respect
to maximising both sensitivity and resolution for a
given duration of an NMR experiment. Obviously, the
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step from time-domain data to a (frequency-domain)
spectrum, using DFT or other types of transforms,
is most powerful when frequency differences are the
major criteria for peak separation. However, other sig-
nal properties such as line shapes may not profit from
Fourier transform. For signals that do not follow an
oscillating behaviour, e.g. that are modulated mainly
by relaxation decays or by J-coupling, DFT is almost
useless.

MUNIN uses the mathematical concept of three-
way decomposition (Carroll and Chang, 1970; Harsh-
man, 1970) and a simple model for NMR spectra that
is based on generally accepted assumptions to achieve
high resolution and good sensitivity while avoiding
artefacts. Though not widely known in NMR spec-
troscopy, the mathematical approach used in MUNIN
has been applied for some time in fields like chemo-
metrics or psychometrics (Harshman and Lundy,
1984). Three-way decomposition is also referred to as
parallel factor analysis (PARAFAC; for a comprehen-
sive description see Bro, 1997) or canonical decompo-
sition (Carroll and Pruzansky, 1984). As a multi-linear
model, three-way decomposition provides unambigu-
ous results only for three- (as presented below) or
higher-dimensional data sets. MUNIN separates the
signals in all dimensions simultaneously. Most other
methods such as DFT, wavelet transforms (Weaver
et al., 1992; Barache et al., 1997), Bayesian and max-
imum likelihood techniques (Bretthorst, 1990; Rouh
et al., 1994; Chylla and Markley, 1995; Kotyk et al.,
1995; Ochs et al., 1999), maximum entropy meth-
ods (Hoch and Stern, 1996; Schmieder et al., 1997),
linear prediction (Koehl, 1999) or the recently intro-
duced filter diagonalisation (Hu et al., 2000) process
in practice only one- or two-dimensional data sets
at any given time. This complicates a self-consistent
analysis of multi-dimensional spectra. Thus, MUNIN
can be regarded as a high-dimensional complement
to traditional spectral processing techniques, where
dimensions are treated one at a time. It can also be
thought of as an efficient method for reducing the di-
mensionality of multidimensional data sets. Namely,
as a result of MUNIN processing, one obtains sets
of one-dimensional objects, which can be more easily
interpreted than a full 3D spectrum.

Deconvolution methods, which were used to re-
solve crowded regions of two-dimensional spectra,
differ from the presently described three-way decom-
position by their use of a priori known lineshapes
and chemical shifts (Denk et al., 1986; Koradi et al.,
1998). To our knowledge, three-way decomposition

was never used for the analysis of NMR data, though
applications of related ideas were reported (Abergel
and Delsuc, 1993; Stilbs et al., 1996; Windig and
Antalek, 1999). Here we present the new method,
MUNIN, and two examples of its application to a 3D
1H-15N-NOESY-HSQC spectrum of the 14 kDa pro-
tein azurin (Karlsson et al., 1989; Van de Kamp et al.,
1992). The first example illustrates computational
feasibility and efficiency in resolving spectral compo-
nents in the most crowded region of the spectrum. In
the second example, calculations are performed on a
subset of the NMR raw data that corresponds to non-
uniform sampling in time along the 15N dimension. It
is shown that the same structural information can be
obtained using only 20% of the original experimental
data.

Materials and methods

Theory
Line shapes in all dimensions together with intensities
can describe the signals, i.e. the peaks, of most multi-
dimensional NMR spectra. In mathematical notation,
NMR signals can thus be defined as direct products
of one-dimensional entities. A spectrum becomes the
sum over all signals, to which an error term may be
added. Note that the term ‘spectrum’ is used here
to describe time-domain NMR data, Fourier trans-
formed frequency-domain data or a mixture of the
two with Fourier transform applied only to selected
dimensions. We restrict the following discussion to
the three-dimensional case, but extension to higher di-
mensions is straightforward. The following equation
can be thought of as a model to fit the experimental
spectrum:

Si,j,k =
R∑

m=1

Am
m · F1m

i · F2m
j · F3m

k + ei,j,k (1)

Here, the three-dimensional experimental data ma-
trix S with size (I, J,K) is written as intensities for
each point, Si,j,k , with i = 1,2. . . I; j = 1,2. . . J;
k = 1,2. . . K. We will refer to the R terms in the sum
as components; these may, but need not, correspond
to cross peaks. The one-dimensional functions F1m,
F2m and F3m will be called shapes, which may, but
need not, correspond to line shapes of peaks. The
term shape is introduced here in relation with spec-
tral line shapes; several synonyms can be found in
the literature, e.g. loads, modes, etc. All shapes are
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normalised, and A is a diagonal matrix containing the
intensities of the R components. The function ei,j,k

contains noise and artefacts, or more generally resid-
ual errors due to incomplete fitting of the experimental
data by the components. In the absence of a priori
constraints on the signals one has R·(I+J+K−2) un-
knowns corresponding to the normalised shapes with
intensities. The system consists of I · J · K measure-
ments and is therefore over-defined for typical values
of I , J , K and R, which means that one can formu-
late a least-square problem to obtain estimates of the
unknowns.

A component may correspond to a cross peak in
a Fourier transformed multi-dimensional spectrum. In
this case the shapes are line shapes of the peak in
all dimensions. However, it is important to empha-
sise that the components of Equation 1 do not always
have a one-to-one correspondence to peaks. Thus, in
an E.COSY spectrum several components are needed
for the description of a single cross peak. In other
cases, as in the examples discussed below, one compo-
nent may represent several cross peaks. Note also that
no assumption about the form of the shapes is made
in Equation 1. Furthermore, if Equation 1 holds for
shapes in frequency-domain, it will as a consequence
of the linearity of the Fourier transform also hold for
corresponding shapes in time-domain.

An important aspect of parallel factor analysis is
the uniqueness of the solutions. In general, uniqueness
can only be obtained for problems involving three or
more dimensions (Kruskal, 1977, 1989; Sidiropoulos
and Bro, 2000). For a specific discussion of MUNIN
applied to 3D NMR spectra we define that the shapes
of two components for a given dimension are differ-
ent when their dot (or inner) product has an absolute
value (significantly) smaller than 1. Note that shapes
can be different even if their frequency maxima are
identical, provided their line shapes differ (e.g. line
widths or multiplet structure). For practical NMR ap-
plications (although not very strict in mathematical
terms) the following three situations have to be dis-
tinguished, when considering the uniqueness of two
components: (i) if the shapes are different in all three
dimensions, the solution is unique; (ii) if for two di-
mensions the corresponding shapes coincide, the two
components can be substituted by a single component
without changing the residual of the fit. In practical
calculations one always obtains a single component
for this case. Thus, all NOE cross peaks to a given
amide group in a 1H-15N-NOESY-HSQC have the
same line shapes in two dimensions (1HN, 15N), and

they are consequently described by a single compo-
nent; (iii) if exactly one shape is identical, we refer to
the two components as being mixed. This situation cor-
responds to the two-dimensional problem discussed in
the following.

For the two-dimensional case (only) Equation 1
can be rewritten in a matrix form:

XX = F1F1 · AA · F2F2T (2)

where XX is the reconstructed 2D spectrum of size I ×J

obtained by summation of the R components, F1F1 and
F2F2 are shape matrices with dimensions I × R and
J × R, and AA is the diagonal R × R matrix containing
the amplitudes of the components. As is shown below,
the model defined by Equation 2 does not result in a
unique solution due to the so-called rotational ambi-
guity of the solution in two dimensions. For a given
set of components we can rewrite Equation 2:

XX = F1F1 · AA · UU−1 · UU · F2F2T (3)

where UU is an arbitrary non-singular R × R matrix
and UU−1 is its inverse matrix. By defining new shape
matrices F̃1F1 and F̃2F2

F̃1F1 = F1F1 · AA · UU−1 and F̃2F2T = UU · F2F2T (4)

and, after normalization of these and moving the nor-
malisation factors into a newly constructed diagonal
matrix ÂA, one obtains:

XX = F̂1F1 · ÂA · F̂2F2T (5)

Equation 5 describes the same reconstructed spectrum
as Equation 2 using new components defined by the
shapes F̂1F1 and F̂2F2 and intensities ÂA. For the case R = 2,
i.e. for the case of two mixed components, the matrix
UU can, without loss of generality, be written as:

UU =
[

cos(α) sin(α)

cos(β) sin(β)

]
(6)

Arbitrary linear combinations of the two components
are defined by the two angles α and β. Equation 6
can easily be generalised for mixing of more than
two components, e.g. by constructing UU such that its
rows represent different unit vectors written in polar
co-ordinates of the corresponding dimensionality.

The ambiguity of the model given by Equation 2
can be eliminated, if additional constraints on the
shapes in one or both dimensions are imposed. Or-
thogonality of the shapes is postulated when the solu-
tion is computed using singular value decomposition.
An alternative method was proposed (Stilbs et al.,
1996) for the analysis of 2D data sets obtained in
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NMR diffusion experiments. Uniqueness of the re-
sulting components was achieved by assuming known
functional dependences (exponential) for the shapes
in one of the dimensions, with the second dimension
corresponding to unknown 1D spectra of compounds
in a mixture. Usage of non-negativity constraints on
the shapes was reported in the field of NMR imaging
(Ochs et al., 1999). Symmetry constraints have also
been used (Abergel and Delsuc, 1993; Steinbock et al.,
1997). These or other constraints can be used to re-
solve the problem of mixing of the components, after
or even during the MUNIN calculations on 3D NMR
data. If the number of mixed components is small,
e.g. two or three, manual procedures also work well
(Stoyanova et al., 1995).

NMR spectroscopy
A gradient sensitivity-enhanced 3D 1H-15N-NOESY-
HSQC spectrum (Zhang et al., 1994) was recorded
for a 1 mM sample of reduced Azurin in potassium-
phosphate buffer (T = 15 ◦C, pH 5). The spectrum was
obtained on a 500 MHz Varian UNITY Inova spec-
trometer with 800, 160 and 44 complex points in the
1HN, 1HNOE and 15N dimensions, respectively. The
spectral widths for these three dimensions were 8000,
8000, and 1810 Hz, respectively. A mixing time of
75 ms was used in the NOESY part of the experiment.
The total recording time of the experiment was 47 h.

Fourier transforms and construction of 3D working
data arrays
All 88 two-dimensional 1HN-1HNOE planes forming a
time domain interferogram in the 15N dimension were
Fourier transformed, after application of square sine-
bell weighting functions in each dimension, one by
one using the VNMR software (version 6.1b, Varian
Associates, Inc.). To reduce the amount of data and the
number of components in the MUNIN calculations,
rectangular regions from 8.11 to 8.36 ppm and from
−0.5 to 9.23 ppm in the 1HN and 1HNOE directions,
respectively, were extracted from each plane. The po-
sition of the rectangle was chosen to cover the most
crowded region of the spectrum along the amide pro-
ton dimension corresponding to 22–27 amide signals
(the exact number cannot be determined due to sig-
nal overlap, presence of weak peaks as well as tails
from signals located outside the region). In the NOE
dimension only empty flanking regions were removed.
The set of the rectangle matrices extracted from all
the 1HN-1HNOE planes constitutes a three-dimensional
array with dimensions 33, 311 and 88 points in the

1HN, 1HNOE, and 15N dimensions, respectively. Note
that only the 1HN and 1HNOE dimensions were Fourier
transformed, while the 15N dimension remained in the
time domain. For illustration purposes only (spectrum
reconstruction and projections of 1HN-15N planes),
1D Fourier transforms in the 15N dimension were
performed on shapes obtained by the MUNIN calcula-
tions.

For calculations on an irregularly sampled data set,
70 of the 88 1HN-1HNOE planes were selected ran-
domly and removed. The remaining 18 planes (3, 9,
10, 16, 18, 23, 26, 45, 47, 51, 55, 56, 57, 61, 62,
66, 69, 73; odd and even numbers correspond to the
real and imaginary planes, respectively), representing
about 20% of the data, were collected in a new input
data set of size 33 × 311 × 18 points, in the following
referred to as the reduced data set. For this set Fourier
transform is not feasible in the nitrogen dimension
before or after MUNIN.

MUNIN calculations, resolving mixed components
MUNIN calculations were performed using home-
made software, which comprised the following steps:
(i) data preparation as described in the previous
section; (ii) three-way decomposition (Ibraghimov,
1999); (iii) de-mixing of the resulting components
when necessary; and (iv) reconstructions of projec-
tions of the three-dimensional spectrum for illustra-
tions. Three-way decomposition was performed ac-
cording to a known protocol (Bro, 1997; Hopke et al.,
1998), i.e. minimisation of the mean square of resid-
uals in the model given by Equation 1 for a specified
number of components (see the Appendix). First, us-
ing a method referred to as ‘Tucker3’ (Tucker, 1966;
Kroonenberg and Leeuw, 1980; Andersson and Bro,
1998), the input three-dimensional data arrays were
compressed to 33 × 32 × 32 and 32 × 32 × 18 3D ma-
trices for the full and reduced data sets, respectively.
This compression yielded a dramatic speed-up of the
subsequent calculations. The model given by Equa-
tion 1 for the compressed arrays was solved by alter-
native least-squares iterations (Harshman and Lundy,
1984). The resulting components were used, after
un-compression, for the initiation of alternative least-
squares iterations of the original data. Convergence
was achieved in 15–20 min CPU time (SGI Octane,
R10000 250 MHz processor) for 27 components on
the full and reduced data sets.

Possible mixing of components was checked by
calculating pairwise dot products of the resulting
shapes (written as vectors). Two components were
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Figure 1. Normalised one-dimensional shapes of 2 (out of 27)
MUNIN components referred to as component 1 (heavy lines) and
component 2 (thin lines). Shapes are along the dimensions of (a)
1HN (amide proton), (b) 1HNOE, and (c) 15N. (d) The same shapes
as in (c), but after Fourier transform. Arbitrary units are used for the
vertical axis.

considered mixed if the absolute value of the dot prod-
uct between their shapes in any of the three dimensions
was higher than 0.95. If at least one of the two mixed
components was mixed with a third component, all
three components were collected in a group of mixed
components. More components could be added to a
group in the same way. Mixing of pairs of compo-
nents was resolved (de-mixed) by manual adjustments
of the angles α and β of Equation 6. No attempts
were made to de-mix groups containing more than two
components.

Results and discussion

Decomposition of a 1H-15N 3D NOESY-HSQC
spectrum
A spectral region of a 1H-15N 3D NOESY-HSQC
spectrum, as described in Methods, was decomposed
into 27 components using the MUNIN procedure. In
this type of spectrum all NOESY cross peaks stem-
ming from a given amide proton are collected in a

single component (since the shapes in both the 15N
and 1HN dimensions are identical). Figure 1 presents
2 of the 27 components, in the following referred to
as component 1 (heavy lines) and component 2 (thin
lines). Panels a–c of Figure 1 show the direct output
of MUNIN, namely the one-dimensional shapes of the
two components. The shapes in Figure 1a correspond
to the line shapes of amide protons in the directly de-
tected dimension. Each shape shown in Figure 1b, dis-
playing the 1HNOE dimension, contains all the NOEs
and the diagonal peak formed by the corresponding
amide proton defined in Figure 1a. Finally, the cosine
modulations in Figure 1c represent the shapes in the
15N dimension. They correspond to time domain sig-
nals, since no Fourier transform was performed in this
dimension prior to the MUNIN calculation. For pre-
sentation purposes, Figure 1d shows the 15N shapes in
the frequency domain after one-dimensional DFT of
the shapes shown in Figure 1c.

All structural information of the NOESY-HSQC
spectrum is found in the NOE shapes of Figure 1b,
making a detailed analysis of the other dimensions
unnecessary. With respect to the 15N dimension data
can be left in the time domain, avoiding the need for
adjustment of phases or weighting functions; one may
even skip decoupling in this dimension. As soon as
components are resolved one also gets resolved diag-
onal signals. These signals, although they do not carry
direct structural information, can be very useful for the
calibration of the intensities of the NOE cross peaks,
which may be affected by the different efficiencies
of the HSQC step of the experiment. Resolution of
components occurs simultaneously in all three dimen-
sions. Therefore, the good characterisation and the
high signal-to-noise ratios of the 1HN and 15N shapes
(Figure 1, a and c) can also be expected in the NOE
dimension. From qualitative visual analysis we con-
clude that the signal-to-noise ratios of the NOE peaks
in Figure 1c are at least as high as those obtained in
the spectrum processed using regular DFT.

1H-15N projections from the 1H-15N 3D NOESY-
HSQC and one of the 1HN-1HNOE NOESY planes
from this spectrum are shown in Figures 2 and 3.
The upper plots (Figure 2a and 3a) represent recon-
structions using all 27 components resulting from
the MUNIN calculations. Below, corresponding plots
were made using the 3D spectrum obtained after reg-
ular DFT (Figures 2b and 3b). Clearly, the spectrum
reconstructed from the MUNIN components and the
Fourier transformed spectrum look very similar, which
proves that the MUNIN calculations converged to a
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Figure 2. HSQC projections from the 1HN-15N 3D NOESY-HSQC
spectrum. (a) Projection of the reconstructed 3D spectrum using all
27 MUNIN components. (b) Projection of the spectrum obtained
with conventional Fourier transform. (c) Corresponding region from
a 1HN-15N 2D HSQC spectrum recorded with four times longer
acquisition time in the 15N dimension than in the 3D spectrum. The
relevant part of the spectrum is framed and magnified in the inset.
(d, e) Projections of the reconstructed spectra using only component
1 or 2, respectively. The positions of the cross peaks corresponding
to components 1 and 2 are indicated by arrows. The vertical line
indicates the position in the 15N dimension of the plane shown in
Figure 3.

good solution. The difference matrix (not shown) be-
tween the spectra of Figure 3, a and b, yields only one
or two contour levels at the positions of the strong
diagonal signals. No regularities were observed in
this difference spectrum, even when plotted at lower
contour levels. One may conclude that the MUNIN
procedure does not distort relative intensities of the
signals, which may occur e.g. in maximum entropy
reconstructions (Hoch and Stern, 1996). The slightly
larger discrepancies between the HSQC projections
(Figure 2, a and b) most probably indicate small dif-
ferences in the baselines of the reconstructed and the
Fourier transformed spectra. Minor baseline drifts can

be expected, e.g. because of the distortion in the first
point in time domain, and they can sum up to visible
amplitudes in projections.

Though convergence to a global minimum is not
guaranteed for the iterative approach used in MUNIN
(Henrion, 2000), we always found good solutions
in our calculations. Two other calculations for the
same spectral region were performed (not shown) with
the spectrum being Fourier transformed prior to the
MUNIN calculations in either only one dimension
(1HN) or in all three dimensions. Though the points in
the input 3D arrays were weighted differently in these
calculations due to application of weighting functions
prior to DFT, the resulting sets of components were
the same in all three cases. This indicates a good
robustness of the MUNIN approach.

Resolving overlapped peaks
An obvious advantage of MUNIN is its ability to re-
solve overlapped signals, provided that their shapes
are different. Confidence in the presence of two signals
corresponding to components 1 and 2 is gained by the
clean lines for each component in Figures 1a and 1c,
and more importantly by the absence of ‘cross-talk’ in
Figure 1b, i.e. most NOEs show up for only one com-
ponent: with only one NMR signal giving rise to both
components 1 and 2, the NOEs would have the same
amide group as origin, and their intensities would be
distributed among both components. For an indepen-
dent test of resolution, the region of a 1HN-15N 2D
HSQC corresponding to the projections of Figures 2a
and 2b is shown in Figure 2c. The acquisition time
in the 15N dimension for this 2D spectrum was four
times longer than for the 3D spectrum. At the posi-
tions marked by arrows and zoomed in the inset, two
cross peaks are clearly distinguishable in the 2D spec-
trum, but not in the projections from the 3D spectrum.
However, in the MUNIN calculations, these signals
resulted as the individual components 1 and 2, i.e.
they were completely resolved. Reconstruction (and
subsequent projection) can obviously be restricted to
selected components only. Reconstructions using only
component 1 or component 2 are shown in Figures 2d
and 2e. Similarly, the 1HN-1HNOE planes of Figures 3c
and 3d were obtained by reconstruction using only
component 1 or component 2, respectively. The sub-
stantial overlap of these two (and other) components
in Figures 3a and 3b is completely resolved. It should
be pointed out that the same structural information as
presented in a ‘traditional’ way in Figure 3 is more
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Figure 3. 1HN-1HNOE plane from the 1H-15N 3D NOESY-HSQC spectrum. The position of the plane in the 15N dimension is indicated in
Figure 2. (a) Reconstruction using all 27 MUNIN components. (b) Spectrum obtained by conventional Fourier transform. (c, d) Reconstructions
using component 1 or 2, respectively. (e, f) Reconstructions using component 1′ or 2′, respectively, obtained in calculations using only 20% of
the original experimental data.

easily obtained from the 1D 1HNOE shapes shown in
Figure 1b.

Mixed components
As was discussed in the theoretical part, the solution
of the MUNIN procedure is not unique if two or more
components have very similar shapes in one of the
dimensions. In Figure 4 we present a typical exam-
ple of mixing observed between component 1 and a
new component named component 3. Here, as in most
cases, the mixing is caused by the degeneracy of the
1HN shapes. The most obvious manifestation of the
component mixing seen in Figure 4 is the presence of
more than one peak in the 15N shapes (Figure 4f) and
negative signals in the 1HNOE direction (Figure 4b).
We observe mixing if the dot product between the nor-
malized shapes is higher than ca. 0.95. The total set of
27 MUNIN components can be divided into 15 groups.
The first eight groups contain individual non-mixed
components. Three groups consist of pairs of com-
ponents degenerate in amide proton shapes, and one

group with two components is degenerate in nitrogen
shapes. There is one group containing three compo-
nents, and two groups contain four components, all
with similarity in the 1HN dimension. It never occurs
that two components have exactly the same pattern of
peaks in the 1HNOE direction.

To simplify the spectral analysis it can be desir-
able to resolve the ambiguity within the groups or,
in other words, to find pure, non-mixed components.
To solve this problem one needs to introduce further
constraints, based on a priori information available
for a particular spectrum. The two components shown
in Figure 4 were resolved by ensuring non-negativity
of the 1HNOE shapes and/or the presence of a single
peak in the 15N shapes. Proper linear combinations
(Equations 2–6) were obtained by manual adjustment
of the angles α and β defined in Equation 6. The
pure, non-mixed shapes are shown in Figure 4, c, e
and g. It should be mentioned that each of the two
angles α and β in Equation 6 affects only one of the
two components when looking at a single dimension.
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Figure 4. Mixing between the components 1 (heavy lines) and 3
(thin lines). (a) Normalised amide proton shapes, which ‘overlap’
with a dot product of 0.97. (b, d) 1HNOE, and 15N shapes, re-
spectively; raw MUNIN output. (c, e) 1HNOE and 15N shapes,
respectively, of components 1 and 3 after manual de-mixing. (f,
g) Fourier transformed 15N shapes before and after de-mixing,
respectively. Arbitrary units are used for the vertical axis.

Thus, if the constraints are defined only for one of
the dimensions (e.g. 15N), the angles become indepen-
dent and can be tuned separately. The reduction of the
cross-talk between the shapes after adjustment of the
angles α and β is clearly distinguishable also for the
time domain nitrogen shapes (Figures 4d and 4e). Al-
though in many cases the automation of the de-mixing
procedure is straightforward, we leave the considera-
tion of the problem for a later publication, where the
MUNIN processing of a complete 3D spectrum will
be presented.

Strictly speaking, the raw result of our calcula-
tion can be thought of as a decomposition of the
investigated spectral region into seven (mixed groups)
plus eight (non-mixed components) independent sub-
spectra. While individual components from a mixed
group may not provide an adequate picture of spectral
features, the sum of all components from this group
does, and can thus be used for reconstruction of sub-
spectra and their analysis. Even without de-mixing this
decomposition brings significant simplification to the
analysis, since mixing of the components does not im-
ply that they necessarily overlap in the reconstructed
3D spectrum. For example, the components 1 and 3
shown in Figure 4 are mixed due to the degeneracy of
the amide proton shapes (Figure 4a), but they are per-
fectly resolved in the reconstructed spectrum, because
of the difference in nitrogen chemical shifts.

Reduced data set, non-uniform sampling
The main motivation for doing the 1H-15N 3D
NOESY-HSQC experiment instead of a 2D NOESY
is to achieve better signal resolution by spreading the
NOE peaks from different amides along the 15N di-
mension. Since structural information is coded only
in the proton dimensions one could pay less attention
to the nitrogen signals. A nice feature of the MUNIN
decomposition is that the shapes can be considered
totally independent from each other. This means that
for the ‘dummy’ 15N dimensions in the 1H-15N 3D
NOESY-HSQC spectrum, one does not need a sam-
pling procedure appropriate for phase sensitive Fourier
transform. Instead, the sampled points could be un-
evenly distributed in the time domain to achieve opti-
mal sensitivity and separation of the components. The
resulting shapes corresponding to non-regular sam-
pling in the time domain could be disregarded in the
spectrum analysis. Alternatively, if one needs the po-
sitions of the nitrogen signals, these one-dimensional
time series can be used for spectral estimations using
other appropriate methods, e.g. maximum entropy.

Results of calculations on unevenly sampled data
in the 15N dimension are presented in Figure 3. Out
of the 88 available NOESY planes, 18 were randomly
selected and used for these calculations. Similar to the
MUNIN calculations performed on the complete data
set, 27 components were obtained. Two components,
which are referenced below as 1′ and 2′, were identi-
fied to correspond to the components 1 and 2 defined
earlier. 1HN-1HNOE planes from the 3D reconstruction
using only component 1′ or component 2′ are shown
in Figure 3, e and f, respectively, and can be com-
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pared with their counterparts obtained from the full
data set (Figure 3, c and d). It can be clearly seen that
the reconstructions for the components obtained using
the full and the reduced data sets are very similar and
consequently carry the same structural information.
Close inspection of the 1HNOE shapes (not shown)
revealed slightly higher noise levels in the shapes of
components 1′ and 2′ than in those of components 1
and 2. However, this can be expected since the an-
ticipated acquisition time of the simulated experiment
producing the reduced data set is almost five times
smaller than the time of the original 3D experiment.
It should also be noted that the number of components
in this calculation is close to the theoretical limit im-
posed by the uniqueness condition for the three-way
decomposition (Kruskal, 1977). Again, the similarity
of the components 1 and 1′, and 2 and 2′, respectively,
demonstrates the robustness of the MUNIN proce-
dure and its tolerance with respect to spectral noise.
It should be emphasised that the cross peaks corre-
sponding to the components 1′ and 2′ were already
not resolved when using the full data set processed by
conventional Fourier transform (Figure 3b). A further
dramatic reduction in resolution has to be expected af-
ter DFT if the acquisition time in the 15N dimension
would be reduced by a factor of five.

Factors influencing MUNIN analyses
Several factors can influence the outcome of a MUNIN
analysis, examples being the number of components
chosen for the analysis or spectral noise and artefacts.
A systematic study of these has to include the analy-
sis of many spectra including synthetic data with fully
known contributions; this is beyond the scope of the
present paper. The following remarks reflect our cur-
rent experience. Noise does normally not give rise to
separate components, since it does not follow the as-
sumption made in Equation 1. If noise components do
appear, then they normally do so with small ampli-
tudes. Spectral artefacts with higher intensities than
the signals pose more of a problem because the set of
components may first try to describe those. The choice
of the number of components to be used is not very
critical. A too small choice will be readily detectable
since several signals will be combined into single com-
ponents, resulting in unexpected line shapes, e.g. two
or more maxima in the shapes along the 15N or 1HN
dimensions. In our experience, a choice that exceeds
the number of real signals by up to 20% has hardly
any consequences. Finally, the processing of complete
3D data sets is for the 1H-15N NOESY-HSQC and

many other types of spectra most effectively done by
individually decomposing several spectral fragments
followed by a collection of all components.

Conclusions

In this paper we introduce a new method, MUNIN,
for spectral processing of 3D NMR data. It relies on a
mathematical technique called three-way decomposi-
tion. The two examples presented above for a 1H-15N
3D NOESY-HSQC illustrate the computational fea-
sibility of the method and the power of MUNIN to
decompose signals in crowded spectra while avoid-
ing artefacts or distortions to the line shapes. The set
of components that MUNIN yields can be thought
of as an efficient and natural method of compres-
sion (>100 times) of spectroscopic data, which can
be very helpful for further spectral analysis. Quan-
tification (e.g. peak picking and peak integration) of
the resulting one-dimensional 1HNOE shapes is much
easier than in the original multidimensional spectrum,
which should significantly contribute to advance the
automation in spectral analysis. Reduction by MUNIN
of the dimensionality of a multidimensional spec-
trum down to one-dimensional shapes opens wider
possibilities for other, non-Fourier based methods of
spectral estimation, which can be otherwise hindered
by computational limitations. Since Fourier transform
is not required in all dimensions, non-uniform sam-
pling schemes in time domain become practical in
multidimensional NMR spectroscopy. Thus, one can
be more flexible in designing experimental procedures
optimised to achieve better sensitivity and resolu-
tion. The MUNIN decomposition can be applied to
data sets other than three-dimensional spectra, e.g. to
a set of 2D HSQC-type spectra in relaxation or J-
coupling analysis. In this case the shapes along the
third dimension of the 3D data array formed by the
set of 2D spectra correspond to relaxation decays or
J-modulations.
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Appendix: Least-squares minimization in MUNIN

Equation 1 can be rewritten as a minimization problem
whose solution describes the individual shapes and
amplitudes of the R components:

min
F 1,F 2,F 3,A

∑
i,j,k

(
Si,j,k −

R∑
m=1

A
m
m ·F1m

i · F2m
j · F3m

k

)2

(A1)

This appendix presents the PARAFAC approach, the
choice of an initial approximation and the ‘Tucker3’
compression.
(1) PARAFAC (Harshman and Lundy, 1984), an iter-
ative algorithm for the solution of Equation A1, uses
the fact that if two shape matrices are fixed, the third
one can be determined by solving a quadratic least-
squares problem. Thus, in every PARAFAC iteration
two shapes are taken from the previous iteration (or
from an initial approximation) and considered fixed,
and the third shape is computed. Fixing for example
F1 and F2, we can update F3 and A by finding the
minimum of

min
Z

‖B − CZ‖2
F (A2)

where the matrix B (dimensions IJ × K) is obtained
by joining the first two dimensions of S, the matrix
C (IJ × R) is defined as Cm

i,j = F1m
i F2m

j , and

Z = AF3T . (The Frobenius norm ‖X‖F of an arbitrary
matrix X is the square root of the sum of squares of all
elements of X.) The update of F3 can be calculated by
normalization of the rows in Z, and the updated matrix
Ais then constructed from the normalization factors.
The minimum in Equation A2 is found by equating to
zero all partial derivatives with respect to Z, yielding
a system of linear equations:

CT CZ = CT B (A3)

Solving Equation A3 requires the solution of K

systems of linear equations with the same matrix
CT C. Singular value decomposition (SVD) is used
to resolve possible singularities in CT C during the
iterations. In subsequent iterations the procedure is
repeated to update the other two shape matrices. The
fact that in every iteration the original functional given
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by Equation A1 is minimized (with some variables
fixed) ensures monotonous convergence of the itera-
tion process. In total one needs for three iterations,
updating all three dimensions, about 3IJKR + 3(I +
J + K)R3 + 15R3 arithmetic operations.
(2) Initial approximations for the first PARAFAC iter-
ation can be obtained as follows (Ibraghimov, 1999).
First an orthonormal matrix F1 is constructed from
the R largest left singular vectors of the matrix S′
(I × JK), which is obtained from S by concatena-
tion of the second and third dimensions. F2 and F3
can then be calculated by solving the quadratic least-
squares problem that is derived from Equation A1
using the orthonormality of F1 and known properties
of matrix norms:

min
F 2,F 3,A

∑
m

∑
j,k

((∑
i

Si,j,k · F1m
i

)
− Am

m · F2m
j · F3m

k

)2

+
∑
i,j,k

S2
i,j,k −

∑
m

∑
j,k

(∑
i

Si,j,k · F1m
i

)2

(A4)

The last two terms are constants and can be dis-
regarded. With D(m)kj = ∑

i

Si,j,k · F1m
i (J × K),

Equation A4 splits into R independent minimization
problems:

min
F2m,F3m,Am

m

∑
j,k

(
D(m)kj − Am

m · F2m
j · F3m

k

)2
(A5)

Using SVD one obtains Am
m, F2m and F3m as the

largest singular value and the corresponding left and
right singular vectors of the matrix D(m), respectively.
Note that this method for the generation of an initial
approximation requires that R ≤ max (I, J,K).
(3) The ‘Tucker3’ step is a useful modification of
the PARAFAC algorithm when R is much smaller
than at least one of the numbers I, J or K (Tucker,
1966; Kroonenberg and Leeuw, 1980). Consider the
following substitutions:

F1 = U1G1, F2 = U2G2, F3 = U3G3 (A6)

where U1, U2 and U3 are matrices with orthonor-
mal columns and dimensions I × R1, J × R2 and
K × R3, respectively. The matrices G1, G2 and G3
have dimensions R1 × R, R2 × R and R3 × R,
respectively. R1, R2 and R3 are selected so that
min(R, I) ≤ R1 ≤ I , min(R, J ) ≤ R2 ≤ J ,
min(R,K) ≤ R3 ≤ K . The original problem of Equa-
tion A1 can then be substituted by two usually simpler
problems:

Qi′,j ′,k′ =
R∑

m=1

Am
m · G1m

i′ · G2m
j ′ · G3m

k′ + e2i′,j ′,k′

(A7)

Si,j,k =
∑

i′,j ′,k′
Qi′,j ′,k′ · U1i′

i · U2j ′
j · U3k′

k + e1i,j,k

(A8)

with i ′ = 1 . . . R1, j ′ = 1 . . . R2 and k′ = 1 . . . R3.
In a first step Tucker3 compression is performed, i.e.
the three-dimensional core matrix Q and the ortho-
normal factor matrices U1, U2 and U3 are estimated
by solving the least-squares problem of Equation A8.
Next, the PARAFAC algorithm is applied to solve
the problem defined by Equation A7. The gain due
to compression lies in the reduced size of Q com-
pared to the original data S. If all residuals e1 in
Equation A8 vanish, then the shapes F1, F2 and F3
defined by Equation A6 correspond exactly to those
of the original minimization problem of Equation A1.
Otherwise they represent a good initial approxima-
tion from which PARAFAC often converges after only
a few iterations. Since the matrices U1 and U2 are
orthonormal and using known properties of matrix
norms the problem of Equation A8 can be rewritten
as follows:

min
U3,Q

∑
i′,j ′

∑
k

((∑
i,j

Si,j,k · U1i′
i · U2j ′

j

)

−
(∑

k′
Qi′,j ′,k′ · U3k′

k

))2

(A9)

and with Pk
i′,j ′ = ∑

i,j

Si,j,k · U1i′
i · U2j ′

j (R1R2 × K)

and Wk′
i′,j ′ = Qi′,j ′,k′(R1R2 × R3) as:

min
U3,W

‖P − WU3‖2
F (A10)

This least-squares problem can be solved by SVD of
the matrix P , followed by construction of U3 from the
right singular vectors corresponding to the R3 largest
singular values. Q is obtained after the last iteration
from W = P · U3T . Initial guesses for the matrices
U1 and U2 are obtained from the largest left singular
vectors of the matrix S′, which is obtained from S by
joining two dimensions. S should be permutated for
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the construction of U2 to make J the leading dimen-
sion. The problem defined by Equation A8 converges
much faster than PARAFAC on the original data due

to the orthonormality of the factors U1, U2 and U3.
The ‘Tucker3’ compression according to Equation A8
is not the time-limiting step of the MUNIN procedure.


